Yasper

Yet Another Smart Process EditoR

User Guide

Yasper Yet Another Smart Process EditoR User Guide

What is Yasper?

Yasper is a tool to specify and execute models of discrete-step processes.

A Yasper process model shows the steps of a process and the order dependencies between them
in one or more diagrams. The diagram technique supports alternative and parallel paths, repeti-
tions of steps, and contention for resources between steps. The diagram isn’t merely a sketch,
but provides an exact formal specification of the order dependencies; this allows simulation. A
simulation is an execution of consecutive process steps that satisfies the specification. Yasper
supports two modes of simulation: manual mode, in which the user selects the next step to exe-
cute in the diagram, and automatic mode, which randomizes the choice of steps and produces an
aggregated report with relevant statistics.

Yasper was developed in collaboration between TU Eindhoven and Deloitte.
For details of its status, availability and use, see the Yasper website:

http://www.yasper.org/

Yasper was written to provide modeling convenience, rather than new and unique new modeling
features: the features it supports are well known, well analyzed, and support exists for them in
other tools. What is more, discrete process modeling tools in general tend to support techniques
such as state machines, flowcharts, and activity diagrams, which are very closely related to Yas-
per models.

Last updated: May 13, 2005 p. 2 /94

Yasper Yet Another Smart Process EditoR User Guide

How to read this User Guide

This user guide assumes you have decided to give Yasper a try, and attempts to provide you with
everything you need know in order to use it. It does not assume any prior knowledge of the
techniques it uses; however, where appropriate, some comparisons with similar tools and tech-
niques will be made for the benefit of the reader who is already familiar with them. Depending
on your background knowledge you may wish to skip certain parts of this guide.

Chapter I describes Yasper models. It details Yasper’s modeling constructs, how they fit to-
gether, how they appear to the user, and what they mean in terms of process execution.

Chapter 2 describes the Yasper editor. It details the user interface functionality related to the
specification of models. It also describes the means available to import or export Yasper models
from/to other applications.

Chapter 3 describes manual execution mode. It details the user interface functionality specific
to manual execution and describes the relationship between this mode and edit mode.

Chapter 4 describes automatic simulation mode. It details the user interface functionality related

to setting simulation parameters and executing a simulation run, and defines the meaning of the
statistics reported.

Last updated: May 13, 2005 p. 3/94

Yasper Yet Another Smart Process EditoR

Table of contents

What is Yasper?
How to read this User Guide
Table of contents

1 Process models in Yasper
1.1 Basic nets

1.1.1 Basic net elements

1.1.2 Process execution in basic nets

1.1.3 Modeling with basic nets

1.1.4 Transitions and places must alternate
1.2 Choice elements
1.3 Roles

1.4 Hierarchical models
1.5 Special arc types
1.5.1 Combined arcs
1.5.2 Inhibitor arcs
1.5.3 Reset arcs
1.6 Extensions for automatic simulation
1.6.1 Arc weights
1.6.2 Processing time
1.6.3 Processing cost
1.6.4 Token case
1.7 Token color
1.8 Data stores
2 The Yasper editor
2.1 Starting with an empty model
2.2 Selecting and deselecting elements
2.3 Moving elements
24 Merging elements
2.5 Deleting elements
2.6 Connecting nodes
2.7 Arc support points
2.8 Changing the type of an element
2.9 Specifying additional properties
29.1 Transition properties
2.9.2 XOR properties
293 Place properties
294 Arc properties
2.10 Working with subnets
2.10.1 Creating and navigating subnets
2.10.2 Connecting across subnet boundaries
2.10.3 Working with the tree view
2.11 Working with roles
2.11.1 Defining roles
2.11.2 Assigning roles to transitions
2.12 Toolbar operations
2.13 Edit menu operations
2.13.1 Undoing changes

Last updated: May 13, 2005

User Guide

[a—
WO 00 I W

14
16
18
20
20
21
22
23
23
23
24
24
33
34
36
37
39
40
41
42
43
44
45
46
46
48
49
50
52
52
52
53
56
56
56
59
60
60

p.4 /94

Yasper

5

2.13.2 Copying and pasting
2.13.3 Aligning elements
2.13.4 Making elements evenly spaced
2.14 File menu operations
2.14.1 Loading and saving Yasper models
2.14.2 Importing BPMN models
2.14.3 Exporting models to Microsoft Visio
2.14.4 Exporting diagram images
2.14.5 Printing diagrams
2.15 View menu options
2.16 Options menu options
Manual simulation
3.1 What is simulation?
3.2 Preparing for simulation (adding tokens)
3.3 Starting manual simulation
3.4 Executing a manual simulation
3.5 Reviewing a simulation
3.6 Manual simulation with roles
Automatic simulation
4.1 How automatic simulation works
4.2 Preparing to run a simulation
4.3 Not being able to run a simulation
4.4 Starting, halting and restarting a simulation
4.5 The simulation report
4.6 Switching views and modes
Index

Last updated: May 13, 2005

Yet Another Smart Process EditoR

User Guide

60
61
62
64
64
66
67
68
69
71
72
73
74
75
76
78
82
83
85
86
87
88
89
91
93
94

p. 5/94

Yasper Yet Another Smart Process EditoR User GUide

1 Process models in Yasper

This chapter describes the process modeling features supported by Yasper.
If you just want a description of how to operate the Yasper tool, skip to chapter 2 (the editor), 3
(manual process execution) or 4 (automated process execution).

Yasper’s process models are Petri nets. Like most Petri net tools, it extends basic nets, defined
by C.A. Petri in 1962, with additional constructs.

Section 1.1 describes basic Petri nets: networks of transitions (process steps or events) connected
through places (conditions that must be fulfilled before or after a process step). Examples of
typical modeling patterns are given.

Section 1.2 adds choice, a construct known from flowcharts and other techniques.

Section 1.3 adds roles, an alternative to using places for modeling resources.

Section 1.4 adds hierarchical modeling with the subnet construct.

Section 1.5 adds special types of connections: combined arcs, inhibitor arcs and reset arcs.
Section 1.6 describes arc weights.

Section 1.6.2 and 1.6.3 add processing time and processing cost.

Section 1.6.4 adds foken case. With this feature, process execution can distinguish between dif-
ferent cases being processed at the same time. This makes it easier to model and simulate work-

flow-like processes.

Sections 1.7 and 1.8 describe Yasper’s rudimentary support for foken color and stores.

Last updated: May 13, 2005 p. 6 /94

Yasper Yet Another Smart Process EditoR User GUide

1.1 Basic nets

This section defines Yasper’s support for basic Petri nets. For a rigid introduction of Petri nets
and their properties, the reader is referred to the many introductory books and articles that have
appeared on Petri nets.

1.1.1 Basic net elements

Models express the flow structure of processes. The simplest kind of model only uses three con-
structs and is called a basic net.

1.1.1.1 Transitions and places

The most important modeling unit represents a process step. It appears in the diagram as a green
square.

fuel the car

Process flow structure means that not every step can occur at every moment: they are subject to
certain conditions. In Yasper, these conditions are made explicit.

O

car out of
Tuel

The squares represent actions, processes or events; generally speaking, transitions between states
of affairs in the world.

The circles represent conditions, and together, the possible states of affairs as far as they are
relevant to the process flow of the process being described. They are known as places.

1.1.1.2 Arecs and nets

Transitions and places are connected to form a net; for example,

Last updated: May 13, 2005 p. 7 /94

Yasper Yet Another Smart Process EditoR User GUide

car out of
Tuel car full of fuel

fuel the car

car is driven around

The arrows are known as arcs.

1.1.1.3 Tokens and markings
A state of affairs is represented by marking the conditions that hold:

car out of
fuael car full of fuel

u =

fuel the car

car iz driven around

The dots are known as fokens; a distribution of tokens over places is a marking.

1.1.2 Process execution in basic nets

Process execution is defined by a single rule: a transition can occur whenever all places that have
arcs to it contain a token; its occurrence will remove a token from each of them, and put a token
in each of the places to which it has an arc.

For example, in the above diagram, fuel the car can only occur when car out of fuel is marked
with a token, and when it occurs, the token moves into car full of fuel.

As soon as the token arrives there, car is driven around becomes possible; when it occurs, the
token moves back into car out of fuel. So we see the model is not very realistic: a car cannot be
driven without running out of fuel, and it cannot be fueled before it has run out. But the point of
the example is that process execution is completely defined by this one transition execution rule.

Last updated: May 13, 2005 p. 8 /94

Yasper Yet Another Smart Process EditoR User GUide

peson B peson B peson B peEson B
hungry satisfied hungry satisfied

A~ A~
S S

person eats food person eats food

food is ready food is gone food is reacly food is gone

In this model, person eats food can only happen when a person is hungry and food is available;
and when it does, the person is no longer hungry, but satisfied, while the food is no longer ready,
but gone.

It is legal for multiple tokens to be in the same place:

car out of
fuael car full of fuel

u =

fuel the car

car iz driven around

In this example, the tokens represent cars: three still out of fuel, one ready to drive.

Generally speaking, in models using this technique, tokens usually describe objects, while places
describe states these objects can be in. A whole marking describes the overall state of the sys-
tem.

Similarly, any number of persons and food portions can be introduced into the other example.
Note that execution is nondeterministic: it is precisely determined what happens when a transi-

tion executes, but when multiple such executions are possible at the same time, it is not deter-
mined which one will happen. More on this in section 1.6.4.4.

1.1.3 Modeling with basic nets

This section presents some examples to illustrate typical modeling patterns.

The intention is to provide some basic notions and examples that later sections will build on to
introduce additional Yasper features.

Full tutorials on the use of Petri nets can be found elsewhere.

Last updated: May 13, 2005 p. 9 /94

Yasper Yet Another Smart Process EditoR User GUide

1.1.3.1 Three useful types of branching in basic nets

Alternative paths can be described by branching on places:

fuel car at Smith's

car out of
fuel

fuel car atJoness

Parallel execution, on the other hand, is described by branching on transitions:

car just
parked
driver unscrews cap driverinsers fis driver screws cap
back on
O—b driver parks car driver pays —D-O
ready to
drive off
car windows . -
are dirty assistant washes

windows

This introduces nondeterminism: the order in which the upper and lower branch execute is
undefined. For example, the assistant may finish before the driver has unscrewed the cap, or
may start washing while the driver is inserting fuel and only finish after the driver is ready, or
any other combination. In fact, any situation in which the order of steps is undefined must be
modeled with parallel branches:

car just
parked
driver unscrews cap driverinsers ful driver screws cap
back on
O—r driver parks car driver pays —D-O
ready to
drive off
L
car windows :
= driver washes
Sl windows

Last updated: May 13, 2005 p. 10 /94

Yasper Yet Another Smart Process EditoR User GUide

In this example, there is no implication that things are done in parallel; it just models the situa-
tion in which the windows can be washed at any time while the other three steps must be per-
formed in the order given.

Branching on transitions can also be used to describe resource contention:

car just
parked

driver unscraws cap driverinsers fusl driver scraws cap
i back an *, ready to
drive off
O—b driver parks car
driver pays

puUmp space
available

driver drives off

The execution rule given above determines that whenever six cars have parked and remain
somewhere in the process, driver parks car will not be possible until one of them drives off,
thereby releasing the space it occupied. All incoming cars would be kept waiting, according to
this model.

1.1.3.2 Well-handled nets and proper completion

As the examples show, these few basic constructs and the one execution rule give us a very
simple, yet very powerful technique to describe process flow logic. Nice aspects are that the
flow logic is fully defined by the execution rule, and that it is fully displayed in the diagram.

The three examples have some things in common:

e all branch points form pairs of splits with matching joins of the same type; if a net has
this property, it is called well-handled;'

e they describe workflows, processes in which individual cases (represented by tokens)
flow from a fixed starting point to a fixed end point; if such a net can handle such busi-
ness cases indefinitely and concurrently without ever locking up or amassing tokens
anywhere, we say it completes properly.?

An exact definition of proper completion is given in section 1.6.4.5.

" This is in accordance with Petri net literature, e.g. Workflow Verification: Finding Control-Flow Errors

Using Petri-Net-Based Techniques (Van der Aalst, 1998). The term well-structured may seem more natural, but is
already in use for a different notion.

* Proper completion generalizes the soundness property defined in Workflow management: Models, Methods, and
Systems, (Wil van der Aalst and Kees van Hee, 2002), which requires the net to be empty initially and eventually.

Last updated: May 13, 2005 p.11 /94

Yasper Yet Another Smart Process EditoR User GUide

In the practice of modeling, proper completion is an important correctness criterion.

A net with a clear begin and end point that lacks this property may well point out a real problem
with the process in question, but more often, is an incorrect model of the process. It turns out to
be very easy for human modelers — including the authors of Yasper - to make mistakes even in
simple models, and checking for proper completion turns out to reveal most such errors.

Well-handled nets always complete properly, so it is a good design principle to stick to neatly
bracketed split-join pairs whenever possible. Doing so makes problems easy to spot, as can be
seen in this beginners’ error:

- driver scress
car just tap

parked back on
driver unscress cap driver inserns fu
O—b driver parks car —D-O
- ready to
dmerpays Rl o
car windows : .
are dirty assistant washes

windows

Every driver parking a car will pay twice and end up with two cars!
The cause is obvious: a transition split is mismatched with a place join.

However, in well-handled nets, the only form of parallelism is completely hierarchical: a process
can start multiple concurrent processes and wait for all of them to finish, but communication or
synchronization between different subprocesses is impossible. In practice, a large class of proc-
esses can only be modeled with nets that properly complete, but are not well-handled.

This situation can arise as soon as the constraints on the order of process steps are anything other
than a choice between fixed paths, even when they are quite simple:

cap is on

W

/ v ‘/L/\ drivz;iﬁ-ﬁ - \

O—b driver parks car driver drives off —PO

driver insers credit = of driver withdraws
card credit card

O e

enough .
credit driver inserts fuel

—={ |} -

driver insers credit nuégﬂ;ﬁgh
card

driver withdraws
credit card

Last updated: May 13, 2005 p. 12 /94

Yasper Yet Another Smart Process EditoR User GUide

At this level of complexity, verifying proper completion already becomes a problem to the hu-
man eye. Proper completion can in fact be verified automatically in many cases. However,
Yasper doesn’t yet offer such verification, because it has a much more insightful way to check
for improper completion: manual or automatic simulation. The user sees the tokens flowing
through the net and spots deadlocks or bottlenecks where they arise. Simulation turns out to be
an extremely convenient tool in designing correct non-well-handled nets, and appears to catch
nearly all of the modeling errors that arise in practice.

1.1.4 Transitions and places must alternate

In Petri nets, arcs always run between transitions and places: it is illegal to connect two transi-
tions or two places directly. Such arcs could be introduced as shortcuts, on which the intermedi-
ate place or transition has been omitted.

Although we have experimented with this feature, the present Yasper release does not support
such shortcuts. It is tidier to always make all transitions and places explicit, since branching can
happen on both.

In practice we often see nets in which all branching happens on places: such models express al-
ternative paths, but no parallelism or resource contention. A net with this property is called a
state machine. For them, it makes sense to always omit the transitions and connect the places
directly; this is in fact how state machines are usually drawn. Historically, state machines pre-
date Petri nets, and they are still used as a basis for popular specification techniques, such as
UML statecharts.

Many process modeling techniques exist today, often based on state machines (e.g. UML state-
charts) or flowcharts (see the next section). Some of these techniques can easily be described
with Petri nets: e.g., UML activity diagrams and the XLANG process models of Microsoft Biz-
Talk are effectively well-handled Petri nets without initial tokens; as we have seen, this implies
that they cannot directly express interprocess communication or resource contention.

Last updated: May 13, 2005 p. 13 /94

Yasper Yet Another Smart Process EditoR User GUide

1.2 Choice elements

There are two places in which the preceding example looks quite awkward: two of the process
steps appear twice. The reason is that the steps in question are subject to varying conditions: for
driver inserts credit card, its results, and for driver withdraws credit card, its prerequisites. The
process execution rule does not allow either, and duplication is the only way to resolve this.
Clearly it is more natural to just write:

cap is on

W

/ driver unscrews cap A driver screws cap \

back on

O—b driver parks car driver drives off —PO

ca off
enough . e
credit driver inserts fuel
driver insers credit driver withdraws
card O credit card
nat enough
credit

The new symbol is called a choice or XOR element, a construct used in flowcharts, a technique
developed by Goldstine and Von Neumann in 1946-1947, and in modern derivatives such as
UML activity diagrams and BPMN.

The process execution rule is extended as follows: a choice consumes a token from one of its
input places, if any, and produces a token in one of its output places, if any.

Again, it is best practice to use XORs in pairs, so as to keep models well-handled, but this is not
always possible. For instance, they often appear in loops:

3 See pp. 266-267 in Herman.H. Goldstine, The Computer from Pascal to Von Neumann, Princeton University
Press, 1972, ISBN 0-691-08104-2

Last updated: May 13, 2005 p. 14 /94

Yasper Yet Another Smart Process EditoR User GUide

price iz ak

arriving &t —D-O
station

car full of fuel

el e fuel the car

price not ok

mave to next station

An XOR can be defined as a place surrounded by non-branching transitions:

1
2 ? B
3 &

At present, Yasper doesn’t quite treat XORs in that way, since it allows roles (cf. section 1.3)

and output weights (cf. section 1.6.1) to be associated with them, and treats their execution
atomically in manual simulation (cf. section 3.4).

Last updated: May 13, 2005 p.15/94

Yasper Yet Another Smart Process EditoR User Guide

1.3 Roles

In business processes or production processes, efficient resource allocation is often a major driv-
ing force behind process design. Yasper offers a special facility for this purpose: the execution
of a transition can be assigned to one or more roles.

Consider, for instance, the parallel execution example in section 1.1.3.
We may wish to express that in general there are two types of agents available to perform the
tasks involved: drivers and assistants. In Yasper we can define driver and assistant as roles, and

tag individual transitions with the roles that can execute them. The general model would look
like this:

car just
parked

UNsCrew cap insert fuel screw cap backon

park car

ready to
drive off

car windows -
are dirty wash windows

Roles do not appear in the diagram, but are defined separately (see section 2.11):

Assign roles to tasks)

ks shown:
‘ A% in whole net A7 i current net
§ task \driver | sssistant |
e AR
insert fuel [v v
teis | capacity | screw cap back on [+ [+
: wash windows [v [+
driver 1 v O
assistant 2 pay
park car v [3
Cancel

]

| oK Cancel

Note that roles have capacities: there is one driver and there are two assistants.

Last updated: May 13, 2005 p. 16 /94

Yasper Yet Another Smart Process EditoR User GUide

Process execution is influenced by roles in the expected way: a transition with assigned role(s)
can only execute when an instance of a role is available to perform it, and while it executes, will
keep that instance from doing something else.

For example, the windows can only be washed if a driver or an assistant is available,

and no more than three cars can have their windows washed at the same time.

Although resources can also be modeled with places, a role is not a place.
Consider the following example:

car just

parked uUnscrew cap insert fuel screw cap back on

QO —Q

ready to
park &gar . assistant ¥ drive off
driver /
cﬂarr';nglijrctr;.rs wash windows

The capacities and assignments to transitions are the same, but execution is different: in this
model, wash windows occupies both a driver and an assistant, while in the previous model, one
of either suffices.*

Whether to model resources with places or with roles depends on the purpose of the Yasper
model. Manual and automatic simulation have special support for roles; for example, role utili-
zation is aggregated in the automatic simulation report. See sections 3.6 and 4.5 for details.

* Note that neither example is realistic: in practice, each car comes with its own driver, so drivers should not be
modeled as resources at all.

Last updated: May 13, 2005 p.17 /94

Yasper Yet Another Smart Process EditoR User GUide

1.4 Hierarchical models

Models can grow big rather quickly. It is possible to spread the contents of a net over multiple
pages by means of the subnet construct. In the surrounding net, a subnet is like a transition, in
that it must be connected to places:

car out of
Tuel car full of fuel

fuel the car

car is driven around

The contents of the subnet are those of a normal net, except that they may contain pins. A pin
represents an arc connecting the subnet in the surrounding net. For example, the content of the
subnet above may look like this:

park fuel pay

The left and right pins correspond to the incoming and outgoing arc, respectively.
Ambiguities can be clarified by naming:

assistant
available

caroutof — assiptant

fuel car full of fuel

caris driven around

Last updated: May 13, 2005 p. 18 /94

Yasper Yet Another Smart Process EditoR User GUide

O e
©ﬁ> e

assistant assistant

Note that two pins can refer to the same place, and that pins cannot hold tokens: the tokens
shown here are those of the place they refer to, assistant available.

Subnets can occur within subnets: in that case, a pin can refer to a pin in the surrounding net.

Execution with subnets is straightforward: all pins are identified with the places they ultimately
refer to.

Last updated: May 13, 2005 p. 19 /94

Yasper Yet Another Smart Process EditoR User GUide

1.5 Special arc types

There are three special types of arcs: combined arcs, inhibitor arcs, and reset arcs.

1.5.1 Combined arcs

Most definitions of Petri nets allow multiple arcs to run between the same transition and place.
In Yasper, all input and output arcs between the same transition and place are bundled into a
single arc.

The biflow arc represents a pair of input and output arcs; it already occurred in some of the pre-
vious examples. An arc can represent any number of input and output arcs; in general, both
numbers appear on the arc:

This is rare in practice, but multiple inputs or multiple outputs are more common:

station tank
capacity in
gallons
ztation explodes
(2F)
gallonz in
Tuel tank
fuel the car
drive the car
fuel indicator - .
T fuel indicator lights

Here, fuel the car always brings 25 gallons of fuel from the station tank to the car tank.

A combined arc with one or more multiplicities is usually equivalent to multiple single arcs. In
the present Yasper version this is not the case for arcs on XORs.

Last updated: May 13, 2005 p. 20 /94

Yasper Yet Another Smart Process EditoR User GUide

r

t
If the arc between p and x behaved like three separate arcs, an execution of x would always pick
a single token from p or g, and put a single token into p or r. Instead, when x decides to consume
from p, it always takes two tokens from it. It does not guarantee to put a token back into p in
that case; it may put it into r instead.

This behavior is odd and may change in the next Yasper version — see section 1.6.

The arcs we have seen thus far are called flow arcs, since they represent tokens flowing between
transitions (or XORs) and places.

1.5.2 Inhibitor arcs

Let us return to the previous example.

gallons in
storage tank
station explodes
(2B)
gallons in car
tank
fuel the car
drive the car

fuel indicator A)

o fuel indicator lights

The arc with the dot on the end is an inhibitor arc. It specifies a constraint on execution,
namely, that the transition at its end can only execute when there are no tokens in the place at the
other end. In the example, the fuel indicator lights when the gas tank is empty.

Last updated: May 13, 2005 p. 21 /94

Yasper Yet Another Smart Process EditoR User GUide

The inhibitor arc is very powerful’, but it takes skill to apply them correctly; in fact, there is a
problem with the way it is used in this model — see the following section.

1.5.3 Reset arcs

A reset arc does not express a constraint, but instead specifies that when the transition at its end
executes, it empties the place at the other end.® In the example, after the fuel station explodes its
storage tank will be empty.

Note that there is, again, a problem with the way in which it is used in the example model.

The two problems mentioned can be corrected as follows.

gallans in
storage tank

station explodes

gallons in car
tank

fuel the car

drive the car

fuel indicator

iz on fuel indicator lights

In the original, once the fuel indicator can go on, it can continue to do so, producing an arbitrary
number of tokens in fuel indicator is on. But we only have one fuel indicator, so once it is on it
cannot switch on again.

The second, smaller error is that the station can only explode when its tank is nonempty. It also
seems a good idea to start out with a nonempty storage tank, otherwise, nothing will ever hap-
pen.

> Arbitrary computations on numbers of tokens can be expressed with inhibitor arcs: they make Petri nets Turing
complete.

® Reset arc is the name used in the Petri net literature. It can be argued that a reset arc doesn’t really perform a reset,
since it clears the tokens from a place, even when that place wasn’t empty initially.

Last updated: May 13, 2005 p. 22 /94

Yasper Yet Another Smart Process EditoR User GUide

1.6 Extensions for automatic simulation

1.6.1 Arc weights

During simulation, when a XOR split is executed, an output places must be chosen. By default,
every place has equal likelihood to be picked.

price iz ok

arriving &t —D'O

station car full of fuel

look gt price fuel the car

price naot ok

move to next station

In this example, the modeler may wish to indicate that when we look at a price, it has a 90%
chance of being acceptable. To this end, the modeler can attach arc weights to the output arcs of
a XOR. It is not possible to do the same for input weights.

Arc weights only take effect in automatic simulation; during manual simulation, the output place
is picked by the user.

Arc weights are not displayed in the diagram, and must be edited by opening the property sheet
of the XOR and setting the arc weights there. They serve a different purpose than arc
multiplicities, discussed in the previous section. In the next version of Yasper we may simplify
this situation, and use arc multiplicities on XORs to express arc weights.

1.6.2 Processing time

Two parameters can be set on each transition to specify the time its execution takes

® its mean processing time
¢ the mean deviation of its processing time

During automatic simulation, the actual processing time spent is determined by these two pa-
rameters. If the given deviation is 0, the processing time is always equal to the given mean.
Otherwise, whenever the transition starts execution, a processing time is chosen randomly such
that on average the chosen value will be the given mean, and the standard deviation from the
mean will be the given deviation. This is achieved by using the so-called gamma distribution.

Last updated: May 13, 2005 p. 23/ 94

Yasper Yet Another Smart Process EditoR User GUide

Note that processing time solely depends on these two parameters of the transition being exe-
cuted; no other information can be used. E.g., to express that the same action can be executed by
a slow and a fast machine, use two transitions.

Processing time specifications can strongly influence the paths a simulation will take. It is easy
to construct nets that are perfectly viable in principle, yet completely lock up with certain
choices of processing times. Often such a lockup turns out to reflect a real bottleneck in the
process being modeled, and experimenting with processing times is a powerful tool in designing
efficient process flows.

In the diagram, timed transitions (with mean > 0) are drawn with a circle; the exact parameter
values are not shown.

O—O0—

driverinsers fusl driver pays

O—l- driver parks car driver drives of —D-O

HhHY

pUMp SpAace
available

1.6.3 Processing cost

Processing cost is also configurable with two parameters per transition:

e its fixed (setup) cost f
® its cost per time unit v

The cost of a process execution is f + v¥*t, where t is its processing time.

Processing cost cannot influence process execution at all — there is no provision in Yasper to
make execution paths depend on cost. Cost calculations only appear in the automatic simulation
report, where they provide indications of the expected overall cost of a particular process con-

figuration.

Processing cost parameter values are not shown in the diagram.

1.6.4 Token case

Last updated: May 13, 2005 p. 24 / 94

Yasper Yet Another Smart Process EditoR User GUide

The examples we have seen so far are workflows: the process takes tokens from a starting point
to an end point. Such tokens represent cases being handled by the workflow. This is a very
common type of model.

Yasper’s automatic simulation feature (see chapter 4) was designed for workflows.
It generates workflow cases, runs them through the model, and produces a report detailing how
the average case was handled.

Automatic simulation requires that the start, continuation and end of workflow cases are clearly
indicated in the model. This must be done with three specifically designed constructs: emitors,
case sensitive places, and collectors, respectively. The smallest model on which automatic
simulation will work has one of each:

E—O—C

1.6.4.1 Case sensitive places

A cased token belongs to a specific workflow case; an uncased token doesn’t.

O O

CASE CASE
sensitive insensive

In Yasper, a place can be marked as case sensitive, which means it can only hold cased tokens.
Any other place can only hold uncased tokens.

1.6.4.2 Emitors

An emitor is a source of tokens. During simulation, it generates tokens one at a time.
Every token generated by an emitor establishes a workflow case: a workflow case is defined by
the emitor that generated it and the generation step at which it was generated.

Like a transition, an emitor emits tokens on all its output places at once.

It has the time parameters of a timed transition to control token generation during simulation.
An emitor cannot have input places. It is, therefore, much like a timed transition without input
places.

Last updated: May 13, 2005 p. 25/ 94

Yasper Yet Another Smart Process EditoR User GUide

< -
o B

Normal transitions and XORs without input places can be created in the editor.
However, simulation refuses to run when they are present: it requires all tokens to be generated
with emitors. This helps prevent accidental modeling errors.

1.6.4.3 Collectors

A collector is a sink for tokens. It consumes them like a normal transition.
A collector cannot have output places.

Collectors mark the expected end points of workflow cases. Automatic simulation reports on
workflow cases flowing from emitors to collectors (cf. section 4.1).

Normal transitions and XORs without output places can be created in the editor.

Simulation will still run when they are present. However, the termination of a workflow must be
marked explicitly with a collector. Simulation refuses to run when there is no path along cases
places from an emitor to a collector.

The simulator supports models with multiple emitors and/or multiple collectors. This is mostly
useful for simulating models in parallel.

1.6.4.4 Case sensitive execution

Transition execution works on a case-by-case basis. To be exact, the execution rule is adapted as
follows: all tokens consumed from case sensitive places must be of the same case, and that case
will be passed on into any case sensitive output places.

Last updated: May 13, 2005 p. 26 /94

YaSper Yet Another Smart Process EditoR User GUide
The examples so far were workflows, so they are easily modified for simulation.

car just
parked

..Q.O_.Q_.

uUnscrew cap insert fuel screw cap back on

ready to
drive off

O—ro park car pay O—D-Q

- O
car windows

are dirty wash windows

The case-by-case behavior of transitions becomes relevant as soon as multiple cases enter the
model. In this example, pay is only possible when fueling and washing have both finished for
the same car. Contrast this with the following:

car just
parked

..Q.O_.Q_.

UNsCrew cap insert fuel screw cap backon

ready to
drive off
O—bo park car pay O—l-o
I 9
caarr':;ﬂg?rctr; - wash windows
}

Here, pay is possible whenever fueling has finished and washing has finished for some car.
Clearly, not the intended semantics, and if wash windows takes a relatively long time, the
difference will be clearly noticeable in the simulation report.

A common use of case insensitive places is to model resource contention.

Last updated: May 13, 2005 p. 27 / 94

Yasper

Yet Another Smart Process EditoR

O—O—

driverinsers fusl

driver parks car

@)

driver pays

driver drives off

HHY

pUMmMp Space
available

User Guide

O |

Here, pump space available must be case insensitive, since it describes how cases affect each
other. If it was case sensitive, driver parks car could never execute.

Inhibitor and reset arcs also work case-by-case:

car just
parked

unscrew cap

O—bo park car

..Q.O_.Q_.

insert fuel

screw cap back on

ready to
drive off

O—O

windows
must be
washed

ok

wash windows

Here, we pay and drive off, whether or not the windows have been washed. Since the resets are
by case, payment for one car doesn’t affect whether the windows of other cars are washed.

However, pay also proceeds if the car was being washed, leaving a token behind in wash win-
dows that will never be cleaned up: this model does not complete properly (as defined in section
1.1.3.2). Not only will this cause problems for the simulation report, we actually want to wait

when the car is being washed.

Last updated: May 13, 2005

p. 28 /94

YaSper Yet Another Smart Process EditoR User GUide

car just
parked
. insert fuel . back
unscrew cap insert fuel sCrew cap an ready to
drive off
O—ro park car P O—D’O
Fy T
start washing e =TT Jpay
windmes- - =7 ¢
== T -
windaows wincor
must be being
washed washed
O : k
E washing windows done washing C
windowes

Note that the inhibitor only suspends payment while the same car is being washed.
To suspend it while any car is being washed, windows being washed must be case insensitive.

We now provide an exact definition of what it means for a transition or XOR to execute. As in
the case of basic Petri nets, this definition completely defines process execution — there are no
other constraints or possibilities.

In general, a transition may have any combination of cased and uncased places attached to it with
any combination of arc types, and with any assignment of roles, time and cost.

Execution of a transition can start whenever the following conditions are met:

e if any roles are assigned to it, a role is available
e all case insensitive places connected to it with inhibitor arcs, if any, are empty

Last updated: May 13, 2005 p. 29 /94

Yasper Yet Another Smart Process EditoR User GUide

every input place contains as many tokens as there are arcs from it to the transition
(counting multiplicities), all having the same case on the case sensitive input places, such
that

no case sensitive places connected to it with inhibitor arcs contain any tokens with that
case

When execution of a transition starts, the following happens, atomically:

a set of tokens on the input places as just described is consumed (removed from their in-
put places)

if any roles are assigned to the transition, one is occupied (i.e. its availability, initially
equal to its capacity, decreases by 1)

all tokens are removed from case insensitive places connected to the transition with reset
arcs

if any cased tokens were consumed, all tokens with that case are removed from case
sensitive places connected to the transition with reset arcs

the processing time for this job is determined

the job is started

Note that a transition without input places can still consume (the set of tokens consumed is
empty).

When the processing time of a job has expired, the following happens, atomically:

if it occupied a role, it is released (i.e. its availability increases by 1)

if starting the job consumed any cased tokens, to every output place as many tokens are
added as there are arcs to it from the transition (counting multiplicities), with the same
case if the place is case sensitive, and without case otherwise

if starting the job did not consume any cased tokens, to every case insensitive place as
many tokens are added as there are arcs to it from the transition (counting multiplicities),
while no tokens are added to any case sensitive places

This last rule means that flow arcs in models can be superfluous and misleading:

pi p2

E e —» C

p3

Here, whenever ¢ fires, no tokens will be put into p2. The arc between ¢ and p2 might just as
well be omitted.

Last updated: May 13, 2005 p. 30 /94

Yasper Yet Another Smart Process EditoR User GUide

The emission of cases by an emitor is identical to the expiration of a job, except that the emitor
generates a new case and puts cased tokens for that case into its cased output places, and will
then use its processing time parameters to determine the next time to generate a case.

E.g., when the emitor in the example generates a case, it puts two tokens with that case into p3
and an uncased token into p/.

For XORs the rules are identical, except that XORs consume from only one of the input places,
if any, and produce to only one of the output places, if any.

Like a normal transition, an XOR may fail to produce a token in a cased output place:

pi p2

p3

Here, when ¢ consumes from p/ it will not put a token into p2, but when it consumes from p3, it
will.

Multiple transitions may simultaneously be able to start and/or finish jobs, and a transition may
simultaneously be able to start and/or finish different jobs. In Yasper’s manual and automatic
simulation modes, finishing always takes precedence. Furthermore, in automatic simulation
mode, starting jobs for the earliest generated case always takes precedence. Other than that, exe-
cution order is free; in manual simulation mode, the user gets to choose, while automatic simula-
tion mode chooses randomly.

The state of execution at any particular point is completely described by the state of all tokens:
for each token its state is described by its location (a place, XOR, or transition), the executing

Last updated: May 13, 2005 p. 31 /94

Yasper Yet Another Smart Process EditoR User Guide

role (if any), and the remaining processing time (if being processed by a timed transition). Each
execution step either puts a token inside a transition or collector (consuming O or more tokens
from places) or releases one from a transition or emitor (producing 0 or more tokens into places).

1.6.4.5 Case sensitive proper completion

When a cased token arrives at a collector, we say the collector collects the case. If no other to-
ken for the case remains, we say the case completes. A model in which every possible generated
case is guaranteed to complete has proper completion.

In nets with proper completion, cases cannot continue forever, and cannot terminate without

completing (i.e. their last token disappears through an outputless transition or XOR). Proper
completion does not rule out the possibility of cases being collected multiple times.

Last updated: May 13, 2005 p. 32 /94

Yasper Yet Another Smart Process EditoR User Guide

1.7 Token color

In colored Petri nets, tokens can have values that can be tested and modified within the net. For
instance, a transition can be specified to consume only integer tokens with a value smaller than
10, and to increment the value on tokens consumed.’

Color allows data to be associated with a process model.

The token case feature (section 1.6.4) can be regarded as a specific, limited application of token
color. Yasper does not presently support any other use of color.

7 Process modeling tools such as CPN Tools (http:/wiki.daimi.au.dk/cpntools/) and ExSpecT
(http://www.exspect.com/) are based on colored Petri nets.

Last updated: May 13, 2005 p. 33 /94

Yasper Yet Another Smart Process EditoR User GUide

1.8 Data stores

A natural way to associate data with a process is to say that the data reside in a data store, and
the process affects the data in a particular way. A typical example is a process interacting with a
relational database by issuing SQL query statements.

Yasper allows such data stores to be represented explicitly.® A store is like a place in that it is
connected with tasks (transitions or XORs).” For arcs connected to stores, the normal arc types
do not apply, since tokens cannot be added to or removed from a store. Instead, it can be speci-
fied whether the task can

create

read

update and/or
delete

(the) value(s) in the store. Any combination can be specified, as long as at least one of the op-
tions is used.

Specifying this information (known collectively as a CRUD matrix) is a well-established
technique; it allows basic consistency checking on the use of data.'

customer customer has
wants to pay paid
pay)
}
BRI transaction
database
manager

e

insped overview

In this example, pay modifies the transaction database,
while inspect overview reads it, but does not modify it.

¥ The store concept was taken from ExSpecT.
% In colored Petri nets, the contents of the store can be specified exactly as a token value.
% Yasper does not provide any direct support for such checks.

Last updated: May 13, 2005 p. 34 /94

Yasper Yet Another Smart Process EditoR User Guide

The present version does not use the specifications of stores and store arcs in any way; simula-
tions ignore them. A future version of Yasper can support full details in this specification
through a plug-in mechanism (see previous section).

Last updated: May 13, 2005 p. 35/ 94

Yasper Yet Another Smart Process EditoR User GUide

2 The Yasper editor

Last updated: May 13, 2005 p. 36 /94

Yasper Yet Another Smart Process EditoR User Guide

2.1 Starting with an empty model

Start Yasper from the Windows Start menu or by double-clicking on the Yasper desktop short-
cut. The main Yasper window comes up in edit mode.

Ggvasper-(unnamed) =lof x|
File Edit View Roles Options Help
. Mode
= = e = e e R B 2 et
2 ' Edit
" Run manually

" Run automatically

~ Building blocks —————
N ¢ O =
OO
O—=C—
e]

—Hierarchy
- {unnamed}

4 o

A quick overview of the interface elements shown and their purpose in editing:

the diagram canvas: to modify the model with direct manipulation

the File menu: to load and save models in various file formats

the Edit menu: to execute certain modifications (e.g. alignments) and copy/paste
the View menu: to configure how models are displayed

the Roles menu: to specify roles (they are not shown in the diagram)

the Options menu: to configure how the editor behaves

the toolbar icons: to directly execute many File and Edit menu operations

the mode buttons: to switch between editing and simulation modes

the building blocks: to add elements to the diagram

the hierarchy view: to navigate and operate on the subnet hierarchy

Initially, the model is empty. To start editing, pick up a building block with the mouse and drop
it onto the diagram canvas:

Last updated: May 13, 2005 p. 37 /94

Yasper Yet Another Smart Process EditoR User Guide

E..?_-Ej‘!’asper— (unnamed)

Fie Edit View Roles Options Help

=1oix|
=2 =1 e e a3 I A P -
» Run manually

£ Run automatically

—Building blocks ——————
¥ =

S

e

~Hierarchy

~ {unnamed}

Last updated: May 13, 2005 p. 38 /94

Yasper Yet Another Smart Process EditoR User Guide

2.2 Selecting and deselecting elements

All diagram manipulations work on a selection of elements; the selected elements are shown
with blue borders. Both nodes (transitions, places, stores, subnets) and arcs (connections) can be
selected.

To select an element, click on it.

To add an element to the selection, shift-click on it.

To remove an element from the selection, shift-click on it.

To select all elements in the diagram, choose Select All in the Edit menu, or press Ctrl-A.

To select a range of elements, click in the background, and drag the mouse across.
A gray rectangle appears; the overlapping elements will be selected.

O— O

To add the elements to the existing selection, hold Shift while dragging.

Last updated: May 13, 2005 p. 39 /94

Yasper Yet Another Smart Process EditoR User GUide

2.3 Moving elements

To move the selected elements, click on one of them and drag the mouse in the desired direction.

O_"|_"O

To copy the selection and move the copy, hold down the Crrl key while dragging.

o—{

Arcs always stay connected.
After moving elements, automatic repositioning may automatically occur:
® merging (see next section): a node is swallowed by another;
¢ nodes are centered on gridline crossings,
if Nodes snap to grid is enabled in the Options menu;

e the selection is moved away, if one or more nodes overlap with other nodes;
® nodes that move outside the diagram boundaries are pushed back on.

Moves can also be executed with the arrow keys. This allows precise placement.

Last updated: May 13, 2005 p. 40 / 94

Yasper Yet Another Smart Process EditoR User GUide

2.4 Merging elements

Moving a node onto another will fuse them together, under the following conditions:

¢ the two nodes are compatible
¢ the node is the only element being moved
® node merging is enabled in the Options menu

O e

(r—»

Arcs can be fused as a side effect of nodes being fused.

Last updated: May 13, 2005 p.41 /94

Yasper Yet Another Smart Process EditoR User Guide

2.5 Deleting elements

To delete the selected elements, select Delete from the Edit menu or click the Delete toolbar
icon, or press the Delete key. For a single element, another option is o right-click it and select
delete.

Deleting a node also deletes all arcs attached to it, since arcs must always be connected on both
sides.

Last updated: May 13, 2005 p. 42 /94

Yasper Yet Another Smart Process EditoR

2.6 Connecting nodes

User Guide

To create connections from the selected node(s) to another node, Ctri-click on that node, which

must not be part of the selection (if it is, the node is copied instead, cf. section 2.3).

QO O

O

Only valid connections will be made.

(r—»

Intermediate nodes are inserted when necessary.

Last updated: May 13, 2005

p. 43 /94

Yasper Yet Another Smart Process EditoR User Guide

2.7 Arc support points

To add an intermediate point11 to an arc, right-click on it and select add point.

-0 y "
delete

® inflow
biflow
outfow
inhibitor
reset

To move a support point, left-click on it and drag.

o1l

Arbitrarily many support points can be added to an arc.

M0

To delete a support point, right-click on it and select delete point.

"'No standard term appears to exist for the intermediate points of polylines; we use support point.

Last updated: May 13, 2005

p. 44 /94

Yasper Yet Another Smart Process EditoR User GUide

2.8 Changing the type of an element

To change the type of an element, right-click on it and select the new type.

properties ...

delete

case sensitive

change to store
add a token properties ...
remEve a baken delete
Comed |
change to XOR
change to subnet
properties ...
p delete
properties ... W Case sensitive
delete change to store
add point add a token
O O remove a boken
® inflow
biflow
outior |
inhibitor
reset

Changing the type of a node automatically adjusts the types of the attached arcs, when necessary.

The available node and arc types and their meanings are discussed in chapter 1.

Last updated: May 13, 2005 p.45 /94

Yasper Yet Another Smart Process EditoR User Guide

2.9 Specifying additional properties

Model elements have additional properties that can be set and inspected in the element’s prop-
erty sheet.

To bring up the property sheet for an element, right-click on the element and select properties ...,
or double-click on it (except on subnets and pins).

To bring up the property sheet for the current net, right-click in the background and select prop-
erties ... or double-click in the background.

Every element has a name and a description. They can be entered in the property sheet. The
name will appear in the diagram if Show names is enabled in the View menu. Names are op-
tional and do not have to be unique.

|Eeneml | Advanced | Connections |

Mame:
I

Description:

0K | Cancel

Some elements have additional properties. To inspect or modify them, click on Advanced and
fill out the relevant form field(s). You will be prevented from entering invalid information.

The various advanced properties are the following.

2.9.1 Transition properties

Last updated: May 13, 2005 p. 46 /94

Yasper Yet Another Smart Process EditoR User Guide

Properties of transition t1 i

=k e ~ performed by role(s]
Mean: [.
Deviston: [0

— processing cost
Fixed (I

Per time unit: Iﬂ'

oK | Cancel |

For a transition, the parameters for processing time and cost (see sections 1.6.2 and 1.6.3) can be
entered here. They must be decimal numbers.'?

For role assignment see section 2.11.2.

The Connections tab can be used to add and remove reset and inhibitor arcs.
Whether the arcs in question appear in the diagram is configurable in the View menu.

'> Caveat: even though Yasper’s interface language is English, the decimal separator to use here is the one set in
your Windows settings. This may change in the next version of Yasper.

Last updated: May 13, 2005 p.47 /94

Yasper Yet Another Smart Process EditoR
General | Advanced | | Connections |
—Places flushed by firing: ——— [~ Places that block firing: ——
v I v
O ! I

0K | Cancel

2.9.2 XOR properties

Last updated: May 13, 2005

User Guide

p. 48 / 94

Yasper Yet Another Smart Process EditoR User Guide

Properties of decision

performed by rolefs)
—output weights
output | weight| in % |
1 50
1 50

ok | cancel |

XORs allow relative output weights to be set (see section 1.6.1).
Like processing time and cost, output weights can have decimal separators.

Type or edit a number in the weight column to adjust it; the percentages are recomputed auto-
matically.

Type or edit in the output column to adjust or set the name of the place in question.

2.9.3 Place properties

For places, the Advanced tab displays their tokens.

To change the number of tokens in the place, type it directly, or click on the tiny triangles next to
it. A value can be entered for a token, but this is of limited use, since values are meaningless to
Yasper'® — see section 1.7.

13 Also, values are not included in the saved document; this will change in a future Yasper version.

Last updated: May 13, 2005 p. 49 /94

Yasper Yet Another Smart Process EditoR User Guide

For case sensitive places, tokens are displayed, but cannot be edited.
The case of tokens is shown: emitor name and case sequence number.

2.9.4 Arc properties

Last updated: May 13, 2005 p. 50 /94

Yasper Yet Another Smart Process EditoR User Guide

To set the number of consumed and/or produced tokens on a flow arc, open the Advanced tab of
its property sheet and adjust the numbers shown.

Properties of outflow arc

The numbers cannot both be 0. With the numbers set to /,0 or 0, 1, the arc is an inflow or out-
flow, respectively; otherwise, it is a combined arc (see section 1.5.1).

On arcs attached to stores, the kind(s) of store access performed can be set:

Properties of store arc

At least one must be selected.

Last updated: May 13, 2005 p. 51 /94

Yasper Yet Another Smart Process EditoR User GUide

2.10Working with subnets

Subnets distribute models across multiple screens; full details in section 1.4.

2.10.1Creating and navigating subnets

To convert a transition to a subnet, right-click on it and select change to subnet.

properties ...

delete

timed

change to XOR

properties ...

browse contents

delete ®\>D{/'®

change to transition @fﬂ"” t \@

To move up to the surrounding (sub)net, double-click on a pin.

When a subnet is deleted or converted into a transition, its contents are destroyed.

2.10.2 Connecting across subnet boundaries

Transitions inside a subnet can be connected to places outside. To show such a connection in the
subnet content, a pin exists within the subnet for every arc attached to the subnet in the surround-
ing net.

Last updated: May 13, 2005 p. 52 /94

Yasper Yet Another Smart Process EditoR User Guide

Pins can be manipulated like places, with two restrictions."* First, pins cannot be copied or
merged. Second, at most one arc can be attached to a pin, directly or indirectly; attempts to at-
tach another will fail.

To add a pin to a subnet, connect the subnet to a pin or place.

o [H o—il

52 tz

An arc on a subnet is shown in red whenever its pin inside is not connected to a transition, di-
rectly or indirectly. For example, in

O—{q] Qe

il subnet with content subsubnet with content ,

creating an arc between ¢ and the pin will turn the two red arcs black.

2.10.3Working with the tree view

At the bottom right, Yasper displays a tree view of the subnet hierarchy. The last example, with
a subnet inside a subnet, is displayed as follows.

' These restrictions will be removed in a future version of Yasper.

Last updated: May 13, 2005 p. 53 /94

Yasper

Yet Another Smart Process EditoR

Eﬁ\ra sper - C\Documents and Settings\rpost\My Documents\svn\yaspernet\b

runk\Yasps

User Guide

=101 x|

File Edit View Roles Options Help
- Mode
oef =21 = 1 N = e e e R o .
— i - Eﬁt
j " Run manually

| -

" Run automatically

I~ Buwlding blocks

H ¢ © &

The net presently displayed is marked in the tree view: its name is in red and underlined.

To navigate to a (sub)net of choice, click on its item in the tree view.

To rename a net, click on its tree view item, wait, then click on it again."” A rectangle will appear
around it. Type or edit the name.

—Hierarchy
[El- unnamed)

o [T

. subsubnet

To copy a (sub)net into the current net, drag its tree view item onto the diagram canvas. Since
nets may not directly or indirectly contain themselves, recursion is cut short.

' You may have to click three times.

Last updated: May 13, 2005

p. 54 /94

Yasper Yet Another Smart Process EditoR User Guide

_ . —Hierarchy
—Hierarchy = {unnamed)
=8 {|.!nnamed} . - subnet
= - copy of subnet
"~ subsubnet copy of subnet ¢ lecopy of subr
- subsubnet
" subsubnet
- _ILI A s
. 3

Last updated: May 13, 2005 p. 55 /94

Yasper Yet Another Smart Process EditoR User Guide

2.11 Working with roles
Roles provide a way to model resources required to execute a task (see section 1.3).
2.11.1Defining roles

On the Roles menu, select Define roles ...

Et:i‘rasper - (unnamed)

File Edit View | Roles Options Help

= Assign bo basks .,

The Edit roles dialog is shown.

To add a new role, click in the role column and type a name for it.

rroles —roles —roles
| role | capacity | role | capacity | role | capacity |
* + |[EE] 0 ¥ s 0
*

OK | Cancel | Ok | Cancel | OK | Cancel |

To delete a role, click on the leftmost, gray part of its row and press the Delete key.

To set a role’s capacity, type the number in the capacity column. A capacity must be a positive
integer; O is invalid and will be automatically corrected to /.

Unlike the names of other elements, role names are mandatory and unique. Yasper automati-
cally adjust the names entered to ensure this.

2.11.2 Assigning roles to transitions

Once one or more roles have been defined, they can be assigned to transitions and/or XORs.

To assign/deassign roles for an individual task (i.e., transition or XOR), double-click on it in the
diagram, select its Advanced properties (see also section 2.9.1), and check the role(s) to be as-
signed.

Last updated: May 13, 2005 p. 56 /94

Yasper Yet Another Smart Process EditoR User Guide

General | [Advanced | Conmections |

—work time —performed by rolefs)

[Oa
v L

Per time unit: Iﬂ'

—token manipulation logic

oK | Cancel

For an overview of all role assignments, select Assign to tasks ... in the Roles menu.

EEJYHSDEI‘ - (unnamed)

File Edit View | Roles Options Help

,, Define roles ...
D= E ;.I% Assign to tasks ...

The role assignment dialog is shown. It has a column for each role and a row for each task (i.e.
transition or XOR).

Last updated: May 13, 2005 p. 57 /94

Yasper Yet Another Smart Process EditoR User Guide

Assign roles to tasks i

‘shown:
% inwhole net ™ in current net

task |a

e
Htﬂ |

0K I Cancel

To assign a role to a task, check the relevant checkbox.
To deassign it, uncheck it.

To limit the rows to tasks in the (sub)net being displayed in the diagram, click on the in current
net button.

If tasks have not been named, it may be practical to set Show identifiers in the View menu prior
to bringing up this dialog.

Last updated: May 13, 2005 p. 58 /94

Yasper Yet Another Smart Process EditoR User GUide

2.12Toolbar operations

The toolbar below the main menu items provides one-click access to frequent operations. The
toolbar items are just shortcuts: each item corresponds to a menu item in the File or Edit menu,

explained in sections 2.14 and 2.13, respectively.

Etﬁ‘fasper - (unnamed)

File Edit View Roles Options Help

(D[&] & [8(@]X] o | s &5l

(trd)

An item is grayed out if the operation cannot be performed at the present time.

To execute an operation, click the item in question.

To get a textual description, put the mouse over an item and leave it still.

Et:i"l'asper - (unnamed)

File Edit View Roles Options Help

D25 &[] X| w| | el g5 5=

Save net

Last updated: May 13, 2005

p. 59 /94

Yasper Yet Another Smart Process EditoR User GUide

2.13Edit menu operations

The Edit menu provides the standard operations and a few more.

E‘:i‘rﬂ sper - R\ pnml\editmenw.pnml

File | Edit View Roles Options Help

E Select Al Ctrl+a }l % |r..1| EI'

Cut Cirl+d
Copy Cir4c
Copy Image Cirl+5Shift+C 'O
(| Paste e pld)
Delete Del .
(pl1)
Align Horizantally

[Align Vertically

Gristribute: Horizanballi 'O

(Distribute Vertically (pl2)
Fedo Ctﬁ.’
Lindo All Ctrl+5hift+2
Reda &l GhrlEShirk=y

2.13.1Undoing changes

Yasper remembers all changes made in the editor since the last time the model was saved to file.

To undo a change, select Undo in the Edit menu, click the Undo toolbar icon, or press Ctrl-Z.
To redo a change, select Redo in the Edit menu, click the Redo toolbar icon, or press Ctrl-Y.

To Undo as many times as possible, the shortcut Undo All is available.
To Redo as many times as possible, Redo All

2.13.2Copying and pasting

To copy the elements selected in the diagram, select Copy in the Edit menu, click the Copy icon
on the toolbar, or press Ctrl-C.

The copy is not always exact, since it is adjusted to form a valid model:
e if an arc is selected, the nodes it connects are in the copy,

even when they were not selected;
e if a pin is selected, it is added to the copy as a place.

Last updated: May 13, 2005 p. 60 /94

Yasper Yet Another Smart Process EditoR User GUide

To paste a copy into the model, select Paste in the Edit menu, click the Paste icon on the toolbar,
or press Ctrl-V. Pasting works in other (sub)nets and even in other Yasper instances, but not in
other applications.

After pasting, the new elements are selected so they can be moved into position.
To copy an image of the current net that can be pasted into other applications,'® use Copy Image

on the Edit menu. The image will contain all elements of the current (sub)net, with the selected
elements marked; gridlines are not shown.

2.13.3 Aligning elements

To shift the selected elements so they are on the same horizontal line, select Align Horizontally
on the Edit menu, or click the toolbar icon, EI

B Yasper - (unnamed) B vasper - (unnamed)
File Edit Wiew Roles Options Help File Edit View Roles Options Help

D|{E] & [ea[@]X| ofc| el @[] DlE] b[m[@]X] o] |] g 5|
O Horizontally align t

O O O

(pI2) (011 i) (p12)

(tr1)

To shift the selected elements so they are on the same vertical line, select Align Vertically on the

Edit menu, or click the toolbar icon, £ .

Eﬁi‘rasper - {unnamed) Eﬁ‘fasper - {unnamed)
File Edit Wiew Roles Options Help File Edit View Roles Options Help

O] | @] #|8s[@]X] of | %I% De{ @] % (B[@[X] = o[o] # [Lil[B
Vertically aligr

=
T 0

i) itr1)

Arc support points (see section 2.7) are not affected by the operation.

Another way to keep node alignment tidy is to set Nodes snap to grid in the Options menu (sec-
tion 2.16).

'® The Microsoft Office clipboard sometimes refuses to accept an image; when this happens, clear the clipboard
before issuing Copy Image.

Last updated: May 13, 2005 p. 61 /94

Yasper Yet Another Smart Process EditoR User GUide

2.13.4Making elements evenly spaced

When elements are in a horizontal sequence, it often looks tidier to distribute them to be evenly
spaced. To perform this operation on a set of elements, select Distribute Horizontally on the

=)

[=
Sl vasper_ (snnamed)

e e File Edit View Roles Options Help
D|c|@| & |B|@]x]| of | s &5 5 O[|| % || e] x| o | = &

Horizonta

Edit menu, or click on the toolbar icon,

T

This works well to bring out the logical ordering between elements even when they are not actu-
ally horizontally aligned.

Nodes on the same height will remain on the same height:

File Edit View Roles Options Help File Edit View Roles Options Help

sl & [l x] ol =[] (5] &[] x] o]] 8]l

Horizonta
‘"\. N

This operation completely ignores arcs: arcs do not affect how nodes are displaced, and arc sup-
port points stay where they are.

Tl

Horizontal distribution is orthogonal to horizontal alignment: distribution shifts nodes
horizontally, while alignment shifts them vertically. They are often combined.

To apply the same operation vertically, select Distribute Vertically on the Edit menu, or click on

the toolbar icon, BE .

Last updated: May 13, 2005 p. 62 /94

Yasper Yet Another Smart Process EditoR User GUide

File Edit View Roles Options Help File Edit View Roles Options Help
D ||| & |B]e] x| of o & 2|55 D[| #[Bs[@[X] o] ﬂﬁﬂl%l&%ﬂ:li@7

T
N

Diagram layouts can be tidied up efficiently and quickly by well-chosen combinations of hori-
zontal and vertical alignment and distribution operations.

Another approach is to keep nodes on gridline crossings by setting the Nodes snap to grid option
in the Options menu (section 2.16).

Last updated: May 13, 2005 p. 63 /94

Yasper Yet Another Smart Process EditoR User Guide

2.14File menu operations

The Yasper File menu offers operations to load and save models, to export them to various file
formats, to print images of models, and to exit Yasper.

ﬁvasper - (unnamed)) - (o) x|
File Edit View Roles Options Help
MNew Cirl+HM =7 Mode
Open .. cl+0 o
Save Cirl+5
Save As ... £~ Run manually
Export as image ... Cirl+E {~ Run automatically
Export as Visio VDX ...
r— Building blocks
Print ... Ctrl+P
Print preview Ctrl+5hift+P E 0 o=
windmill-case-sensitive. pnml in R Ypnml %
sim.priml i Rz \priml [E]
red-arcs.pnmlin C:\Documents and Setﬁrus\rpostWyrD'oummt_s‘lsm\yamer.net\tﬂmk‘\\'amer'ﬂjserﬁdde :
editmenu.prml in R:ipnml O—»}—+0
Exit Alt+F4 C—C—»]
=20
— Hierarchy
----- {unnamed}
2 | _*l_I

2.14.1Loading and saving Yasper models

To save a model to file and specify the filename, select Save As ... on the File menu.
A dialog will ask for the filename.

Last updated: May 13, 2005 p. 64 /94

Yasper

Yet Another Smart Process EditoR

21
Save in: Iklj pnmi j 4= 5] EF '
ﬂ? 1t.pnml
girault-valk ﬁk}lmzo.pnrnl
invalid (5% 2flows. prml
ﬁ?zﬁows-ec. pnml
ﬁ? 2pin 1place. prml
_iPhilips-CFT ﬁﬂoles-ﬂo-botﬂened(.pnml
157 10atonce. prml
@badﬂground .pomi
[Cltest-apri3 {5¥ benzinepomp 1.prmi
oPell -
Size: 336 KB r-2.pnml
Files: test13.pnml, testi4.pnml, test15.pnml, testl.bpmn, ... il
(57 1diep.prml ﬁmlors .priml
{77 tmultiarc. pnml ﬁ?mmplex—sync.pnml
(¥ tmultiarc-subnet. priml {57 crossbow-ec.prmi
File name: || j Save
Saveastype: [PNMLfles | Cancel |
7

User Guide

To save a model and use the filename with which it was opened or saved before, select Save on
the File menu, click the Save net toolbar icon, or press Ctrl-S.
If Yasper doesn’t know the filename to use yet, it shows the Save As dialog.

To start working on a new model, select New on the File menu or press Ctrl-N.
If the existing model has unsaved changes, Yasper will offer the opportunity to save it first.

To open an existing model, select Open on the File menu, click the Open net toolbar icon, or
press Ctrl-O. If the existing model has unsaved changes, Yasper will offer the opportunity to
save it first. Then, a dialog will ask for the file to open.

COSSSS—— 2l
Look in: ||.l_‘_',='|‘pr1m| j = & o E-
1 bpmin 5% 1t.prml
girault-valk 5% 2e2m20.prml
invalid 5% 2flows. pnml
5° 2flows-ec.pnml
Chold 5% 2oin iplace. prml
1 Philips-CFT ¥ 2roles-no-bottleneck, prml
Csmi 57 10atonge,onml
ispec ﬂbad&grc Type: Petri Met Markup Language
test-apri3 benzing Si2&: 5.35 KB
! 3 ﬁ? Date Modified: 3/14/2005 1796
wipeD W e
% 1+ 2flow. priml ﬁ? collects-innoncallectar-2. pnmil
[1attime. prml (¥ collects-n-noncollector prmi
7 1diep. priml 5 colors, prml
¥ imultizre. pnml i5® complex-sync.prml
¥ imultiare-subnet. priml 57 crossbow-ec. prml
i
File name: |cased-tokens.pnml j Cpen
Files of type; [PNML files | Cancel |
P

Last updated: May 13, 2005

Yasper Yet Another Smart Process EditoR User Guide

This dialog works in the standard way. Select a file and click Open to open it, or navigate to
another directory using the various means the dialog provides. It is also possible to specify the
fully qualified pathname or a URL of a PNML file in the File name selector.

Yasper saves its models in an XML-based file format conforming to the PNML standard'’, with
the extension .pnml. It can obviously read every model produced with Yasper, but its use of
PNML also provides limited interchangeability with other process modeling tools. In principle,
all basic nets (section 1.1) and some additional features can be interchanged with any other tool
that can read or write PNML. In practice, interchangeability is still limited, since tools disagree
on how to interpret or employ the PNML standard. Therefore, Yasper may refuse to read or mis-
interpret PNML produced by other tools, while other tools may do the same on PNML produced
with Yasper.

2.14.2Importing BPMN models

The Open dialog can also be used to import models in BPMN format. This format is used by a
tool called Deloitte Industry Prints Process and Repository to create process models in the
BPMN notation.'®

17 For the PNML standard, see http://www.informatik.hu-berlin.de/top/pnml/;
for Yasper’s use of it, see http://www.petriweb.org/specs/.
8 For the BPMN standard, see http://www.bpmn.org/

Last updated: May 13, 2005 p. 66 /94

Yasper

Yet Another Smart Process EditoR

User Guide

2 x]

Look in: I I UserGuide

G -odm

$52¥ fueling-arctypes-repaired-sc-weird. paml

ﬁ? fueling-llstructured-sound-xor-4sim. pnml
ﬁ fueling-lstructured-sound-xor, pnmil
ﬂ?ﬁ.leling ‘oop-subnet-w-assistant, pnmi
ﬁ?ﬁ.leling—par.pnml
ﬁfuelhg—par—mles.pnml
ﬁﬁfueling—par—rnles—as—places.pnml
ﬁ?ﬁ..leling-par—mles—ec.pnml
ﬁfueling-par—mles—ec—cased.pnml
ﬁffuelu'lg—par—mles—ec—inhibitms.pnml
ﬁ?ﬁ.leling-par-mles-ec-reset.pnml
ﬂ?ﬁ.leling -par-oles-ec-wait. prml
ﬁ?ﬁ.leling—res.pnml
ﬁfuelhg—res—ﬁmed.pnml
ﬁ?Fueling—res—ﬁmed—ec. priml

ﬁ? fueling-res-timed-ec-sign. pnmi

R |
T ¥ cased-inh-reset, priml
My Recent FEF cp-up. pnml
CDocuments 59 ot prml
fw e covs -t prmil
B¥ distribute. priml
Deskiop e-c.pnml
8% editmenu.pnml
‘ sEXF e-ys-t.prml
e flueling-alt. pnml
My Bocuments: ¥ fueling-arctypes. prml
T
My Compliter
i': 4 -
My Network JlE ERaG s
Places :
Files of type:

|]

| = | oeen |

|PNMLfiles] Cancel |
PNML files I P

All files k

To import a BPMN model in this format, use the Open function, but in the Files of type: selec-

tor, select BPMN files. Instead

of PNML files, the list of BPMN files in the same directory will

be shown. Pick one and click the Open button, or navigate to another directory with the methods

provided by the dialog.

2.14.3 Exporting models to Microsoft Visio

To export a model to Microsoft Visio format, select Export as Visio VDX ... on the File menu.

Last updated: May 13, 2005

p. 67 /94

Yasper Yet Another Smart Process EditoR User Guide

Export as Visio XML document .. . | xl

Save in: | |5 My Received Files j = [E] EF v
E Mokia 6610
3 teet2002. vdx
My Fecent teet2003. vdx
Documents
Desktop
Wy Doouments
g B
My Computer
- -
[E el File niame: TestDocumentName wdx ﬂ Save
Flaces
Save as type: Visio 2003 document j Cancel
Visio 2002 document | 4

Visio 2003 documert

The dialog offers two options:

e export to Visio 2002 VDX format
e export to Visio 2003 VDX format

Although the extensions are the same, the two document formats are incompatible.
Visio 2002 and 2003 can partly read each other’s VDX documents, but in doing so, throw warn-
ings and lose information. Therefore it is important to select the correct format when exporting.

The translation provides a fairly accurate Visio representation of the Yasper model. If the
document has subnets, they will be on separate Visio document pages, and the page symbol can
be double-clicked to go to the page content.
The resulting Visio diagram is not intended as a replacement of the Yasper model:

® some information, e.g. on roles, is not included;

e there is no support for making sure that subsequent edits of the Visio document will leave

it a valid representation of a Yasper model, and
e there is no support for importing Visio diagrams back into Yasper.

2.14.4Exporting diagram images

Last updated: May 13, 2005 p. 68 /94

Yasper Yet Another Smart Process EditoR User Guide

To export an image of the current (sub)net to file, select Export as image ... in the File menu.
Various bitmap image formats are supported.

Export current view as image ... _‘_?_[_).-_tj

Save in: IIE' UserGuide ﬂ &= fji v-.

My Recert
Documents

Desldop

Y

My Documerits

-

My Network me: Jaistibute -] Save
Flaces _ ' _
BMP (*bmp:~ dib:” rle) =] Cancel |
BMP [bmp .~ dib~ e} £
JPEG {7 jpa:”" jpeg;” jpe:” jfif}
GIF “.f)

TIFF (tif;" ti
|.P-.II Files !

The image exported is the same as that copied by Copy Image (see section 2.13.2), except that no
elements are selected.

2.14.5Printing diagrams

To print a Yasper model, select Print in the File menu, click the Print icon in the toolbar, or
press Ctrl-P. The print dialog will appear.

Last updated: May 13, 2005 p. 69 /94

Yasper

— Prirter

Yet Another Smart Process EditoR

il

Name:
Status:
Type:
Where:

PDFCreatar:
Comment: eDoc Prirter

Properties... |

[Prirt to file

— Prirt range
= Al
{" Pages

from: |1

" Selection

to:

2

—Copies

MNumber of copies: 1 -

@ | Collate

[ok | cance |

User Guide

The images are identical to those produced by Export as image (see previous section), except
that they are automatically scaled to fill the printed page.

The Print range determines what to print:

e select All to print the main net and all subnets,

each on a separate page;

e specify a page range to limit which of the nets are printed;

e select Selection to print the net that a Copy operation would copy

(see section 2.13.2).

For a closer look at what is going to be printed, use Print preview on the File menu (Shift-Ctrl-

P).

Last updated: May 13, 2005

p. 70/ 94

Yasper Yet Another Smart Process EditoR User GUide

2.15View menu options

Use the View menu to configure how the model is displayed.

Et:i‘rasper - (unnamed)

File Edit | View Roles Options Help

D— |Iﬁ:’ |I v Show stores ng '“l * |m| E:{l

v Show inhibitor arcs
v Show reset arcs

v Show names
Show identifiers

v Show grid [%
Grid through nodes
® Grid around nodes

Settings are remembered; future Yasper sessions will use them."”

e When Show stores is off, data stores (cf. section 1.8) are omitted from the diagram.
(They remain present in the model.)

e When Show inhibitor arcs is off, inhibitor arcs (cf. section 1.5.2) are omitted from the
diagram. (They remain present in the model.)

e When Show reset arcs is off, reset arcs (cf. section 1.5.3) are omitted from the diagram.
(They remain present in the model.)

e Show names displays the user-assigned names on elements. Note that such a name does
not always exist and does not have to be unique.

e Show identifiers displays the system-assigned identifiers on elements. An identifier al-
ways exists and is always unique. Like Show names, this setting not only affects the dia-
gram, but also the appearance of elements in dialogs and reports; it is convenient to set
this when explicit names have not yet been assigned.

® Show grid displays a grid on the diagram surface; this is mainly useful for horizontal and
vertical alignment, e.g. with the snap to grid feature (cf. section 2.16)

e Grid through nodes makes snap to grid snap elements to grid crossings;

e Grid around nodes makes snap to grid snap elements to grid tile centers.*

Most settings only affect the diagram; the Show names and Show identifiers settings also affect
how elements appear in the various dialogs used during editing, and in the automatic simulation
report. Names are assigned by the user, optional, and not always unique, while identifiers are
machine-assigned, required and unique.

' However, if multiple Yasper sessions are running at the same time, changing a setting in one will not affect the
other.

* Grid around nodes is the layout style used for most board games; Go players will prefer the Grid through nodes
layout.

Last updated: May 13, 2005 p. 71 /94

Yasper Yet Another Smart Process EditoR User GUide

2.160ptions menu options

The user preferences in the Options menu affect the way editor behaves.
Like View settings, they are remembered for future Yasper sessions.

Et:i‘rasper - (unnamed)

File Edit View Roles | Options Help
DI@IEI c% ||| v Merge nodes

Mew places wil be case sensitive
Mew transitions will be timed

v Mode centers snap to grid
v Arc points snap to grid

Keep final marking after runs [%

® Merge nodes makes a node melt away into a compatible node when moved onto it; for
details see section 2.4.

® New places will be case sensitive determines whether places dragged from the building
blocks (see section 2.1) are case sensitive.

® New transitions will be timed determines whether transitions dragged from the building
blocks will be timed.

® Node centers snap to grid determines whether after moving selected elements, node cen-
ters will automatically snap to the gridline crossings (see section 2.3).

® Arc points snap to grid determines whether after moving selected arcs, their support
points (see section 2.7) will snap to the grid lines.

® Keep final marking after runs determines what happens when switching from manual or
automatic run mode back to editing mode. If this setting is disabled, editing will continue
with the net as it was before simulation started; if it is enabled, it will continue with the
token marking that was in effect in simulation mode.”!

I Except that if tokens were being processed by transitions, they will be forcibly produced, since tokens cannot
reside in transitions during editing.

Last updated: May 13, 2005 p. 72 /94

Yasper Yet Another Smart Process EditoR User GUide

3 Manual simulation

Last updated: May 13, 2005 p. 73 /94

Yasper Yet Another Smart Process EditoR User GUide

3.1 What is simulation?

As explained in section 1.1.2, we know exactly what it means for a process described in Yasper
to execute, since it is precisely defined (in section 1.6.4.4) when a process execution step is pos-
sible, what happens when it starts, and what happens when it finishes. Therefore, at any time it

is unambiguously determined what may happen.

It is not always unambiguously determined what wil/l happen; many choices remain open:

multiple transition executions may be possible at the same time;

for timed transitions, processing time may vary;

for transitions with roles, multiple roles may be available;

for choice elements (XORs), multiple inputs and/or outputs may be available.

Therefore it can be very instructive to see execution happen in a process model. This is known
as simulation, since it simulates execution of the real process being modeled.

Yasper offers two methods of simulation:

¢ manual run: the user picks most of the choices by hand
e automated run: the system picks all of the choices at random

This chapter describes the facilities for manual simulation;
automated simulation is described in chapter 4.

In manual simulation, the user executes the process step by step, making choices along the way.

This is useful for showing that certain situations can be reached — for example, deadlocks. For
quantitative analysis of a process model, use automatic simulation.

Last updated: May 13, 2005 p. 74 /94

Yasper Yet Another Smart Process EditoR User Guide

3.2 Preparing for simulation (adding tokens)

A model does not always represent the particular initial situation in which a run should start.
For manual simulation, which does not employ time, such preparation mainly consists of choos-
ing the right initial distribution of tokens. Models with initial places, such as those given in sec-
tion 1.1 to 1.5, require that tokens be added to the initial places. Models with places that repre-
sent resources can be configured by setting various numbers of tokens in such places.

To perform such changes, go to Edit mode; in manual or automatic run simulation mode, the
only way to modify the token marking is by executing transitions.

Last updated: May 13, 2005 p. 75/ 94

Yasper Yet Another Smart Process EditoR User Guide

3.3 Starting manual simulation

In the right upper hand corner, three radio buttons control the mode Yasper is in.

l=t_;\"as.mer - G\Documents and Settings\rpost\My Documents\svn\yasper.net\trunk\Yasper|UserGuide \fueling = ID'ﬂ
File Edit View Roles Options Help

D& % []@] x| o[] 2 |Gl e

i @ Edit

" Run manually
cap is on B Aa]|
W gt

driver scraws cap [Building blocks
back on

=]
driver parks car driver drives off . ’ o

]
OO
payment O—o—
Sl

—Hierarchy
E|--fL!e|ing
payment

s ol

To switch to manual simulation mode, click Run manually.22

2 This example describes the same process as the example in section 1.2; it was derived from it by adding an emi-
tor-collector path, making some transitions timed, moving a part into a subnet, and changing the layout.

Last updated: May 13, 2005 p. 76 /94

Yasper Yet Another Smart Process EditoR User Guide

g;,?-ij‘{asper - C:\Documents and Settings\rpost\My Documents\svn\yasper.net\trunk\Yasper\UserGuide | fireling-ex Lsimudatio = IEIIiI
File Edit View FRoles Options Help
e Mode
D]]| |
o " Edit
& Run manually
tHp 1 an £ Run automatically
T driver schess cap
back on
driver parks car
pgymet
_H'iuicul.irr
El-fueling
- payment
{ | _'I_I

The display changes in various ways:
e there is no time in manual simulations, so timed transitions appear timeless;
¢ the elements that can execute are indicated by a red border;
¢ the toolbar gets four buttons, used in replaying the simulation.

Editing operations become unavailable.

To switch back to edit mode, click Edit mode.

Some File operations can be invoked in manual simulation mode, but have the effect of switch-
ing to edit mode, since they do not make sense unless performed in edit mode.

Last updated: May 13, 2005 p. 77 /94

Yasper Yet Another Smart Process EditoR User Guide

3.4 Executing a manual simulation

To execute a step, click on an element that is marked executable. In the above picture, that can
only be the emitor; clicking it produces

f-;,?-i:'i‘{asper - C:\Documents and Settings\ rpost\My Documents\svnyasper.net\trunk\Yasper\UserGuide | fueling-+ 4 simulatios i |E||i|
File Edit View Roles Options Help

= Mode
ol =21 = |G TR T S (e
&+ Run manually
T?E\on " Run automatically

] i
driver scress cap
back on

driver parks car H U“ | driverdrives off

payment

— Hierar l.:-‘"}!I
El-fueling

-
4 | >

Repeat to continue. When multiple items are executable, select any of them.

Let’s assume driver parks car is clicked.

Last updated: May 13, 2005 p. 78 /94

Yet Another Smart Process EditoR

User Guide

Yasper
!-;,?-ij‘{asper - C:\Documents and Settings\rpost\My Documents\svnyaspernet\trunk\Yasper\UserGuid _.___jglil
File Edit View FRoles Options Help
= Mode
ol =21 = R TR TS e
& Run manually

cap is on

] driver schess cap
back on

e
driver parks car | |

payment

driverdrives off

" Run automatically

— Hierar l.iry
El-fueling

4 |

A subnet is marked executable whenever any of its elements are. Click on the subnet to move

inside.
=
File Edit View Roles Options Help
= Mode
= L R
EERESE T
&+ Run manually
" Run automatically

B driver withdraws
credit card

anough. driverinserts fuel

credit

driver insers credi
card

not enough
credit

i~ Hierar l.:-‘"}!I
El-fueling
- payment

4] |

To move up into the surrounding net, click on a pin.

Executing a XOR is usually a multi-step process.

Last updated: May 13, 2005

p. 79 /94

Yasper Yet Another Smart Process EditoR User GUide

O

To start executing one, click it.

/

O

If input can be taken from multiple places, they will be marked with red borders.
To pick one, click it.

X

If output can be put into multiple places, they will be marked with red borders.
To pick one, click it.

X

If there aren’t multiple inputs or outputs to choose from, the respective step is omitted. For
instance, clicking the XOR in the example above, which only has one input, directly produces

Last updated: May 13, 2005 p. 80 /94

Yasper Yet Another Smart Process EditoR User Guide
!-;.?_-ii‘!asper - C\Documents and Settings\rpost\My Documents\svn\yaspernet\trunk\Yasper|UserGuide i = | Ell_il
Fle Edit View FHolss Optons Help
T Mode
D@ |-
- T £ Edit
i cap is
capis off P & Run ’y
" Run automatically
driverwihdraws
L] credit card
e;‘:é?th' driver insers fuel :
driverinsers credit
card
not enaugh
credit
—Hierarchy
E|--fu_elir|g
- payment
2 | ﬂJ

Last updated: May 13, 2005

p. 81 /94

Yasper Yet Another Smart Process EditoR User GUide

3.5 Reviewing a simulation

Four controls in the toolbar appear in manual simulation mode:

il Undo all steps — back to the start of the run

Iil Undo the last step

|L‘ Redo the last undone step

ﬂl Redo all redoable steps — forward to after the last step taken

The buttons are grayed out when the function in question is not available. For example, right

after taking a step, the first two are always enabled, since the step can be undone, while the other
two are disabled, since there is nothing to redo.

Last updated: May 13, 2005 p. 82 /94

Yasper Yet Another Smart Process EditoR User GUide

3.6 Manual simulation with roles

When roles have been assigned to tasks (see section 2.11.2), manual simulation offers the choice
which role to use when performing a task. Reconsider the first example of section 1.6.4.4, with
roles assigned as in section 1.3:

car just
parked

..Q.O_.Q_.

UNsCrew cap insert fuel screw cap backon
ready to
drive off
O—bo park car pay O—l-o
Fy
v] >
{ /)
ca;rr;ng?rctr;ﬁ wash windows
¥
Assign roles to tasks i
tasks shown:
’7 {* in whole net " in current net
task | driver | aasistant |
Edit roles UNSCTew cap [+ [+
roles insert fuel [+ v
' i | capacity | screw oap back on v ¥
. wash windows v [
k driver 1 I B
assistant 2 pay
* park car [+ [
ok | Cancel ok | _ cancel |

In manual simulation mode, the interface displays a box for every role. At any time the box lists
the transitions and XORs that can execute with that role:

Last updated: May 13, 2005 p. 83 /94

Yasper Yet Another Smart Process EditoR User Guide

Eﬁj‘{asper - CG\Documents and Settings\rpost\My Documents\svn\yaspernet\trunk|Yasper\UserGuide \fueling oo Iﬂlil
Fie Edit View FRoles Options Help
=T Mode
D= | «l>]x]
& " Edit
carfist j * Run manually
parked " Run automatically

UNSCTEW Cal
P ready to

drive off

car windows P
are dirty wash windows
¥
E & Hierarchy ——————
----- funnamed}
=
1 »

driver
unscrew cap Unscrew cap
wash windows wash windows

To execute a task with any available role, click on it in the diagram.
To execute a task with a specific role, click on the task in the box for that role.

Last updated: May 13, 2005 p. 84 /94

Yasper Yet Another Smart Process EditoR User GUide

4 Automatic simulation

As discussed in section 3.1, Yasper provides the user with two methods to execute processes in a
process model:

¢ manually (see chapter 3)
e automatically (this chapter)

In an automatic simulation, cases for the process are generated and executed automatically. Sta-
tistics on execution times and resource utilization are aggregated and summarized in a report.

While in manual runs, choices on how to continue are made buy the user, during automatic runs
all choices are made randomly, depending on configuration parameters set by the user before-
hand.

Automatic simulation serves two main purposes. First, many logical modeling errors are caught
when automatic simulation refuses to run or produces unexpected results. Second, once a correct
process model has been constructed, simulation can be used to estimate performance and effi-
ciency.

This chapter explains

the general principles of automatic simulation (section 4.1)
how to prepare for a run (sections 4.2 and 4.3)

how to invoke and control a run (section 4.2)

what the figures in the simulation report mean (section 4.5)
switching views during simulation (section 4.6)

Last updated: May 13, 2005 p. 85/ 94

Yasper Yet Another Smart Process EditoR User GUide

4.1 How automatic simulation works

Automatic simulation assumes workflows: process models that have the net effect of taking indi-
vidual cases from a well-defined starting point to a well-defined end point. Before automatic
simulation can be performed, the starting points, end points and intermediate points must be ex-
plicitly marked in the model with emitors, collectors and case sensitive places, respectively —
section 1.6.4 provides full details and examples.

The simulator generates workflow cases in emitors, runs them through the process model, col-
lecting statistics along the way, and summarizes them in a report. Some of the reported statistics
pertain only to cases that have completed in collectors (see section 1.6.4.5).

Several user-configurable parameters influence the behavior of automatic simulation runs:

® processing time for transitions (see section 2.9.1 on how to set it)
® output weights on XORs (see section 2.9.2)
® role capacities and role allocations for either (see section 2.9.1)

Another parameter merely helps summarize the behavior:
® processing cost for transitions (see section 2.9.1)

To modify these parameters, go to Edit mode; it is not possible to change them in run mode.

Last updated: May 13, 2005 p. 86/ 94

Yasper Yet Another Smart Process EditoR User GUide

4.2 Preparing to run a simulation

Click on Run automatically. The controls for automatic simulation appear.

_Ipix

File Edit View FHoles Opfions Help

“u 1 Mode
D||;|q|(iq|.|:.|.| " model report
—re;m'tnnﬂ':e]atestautmatﬁ:i_r " Edit

elapsed # generated # completed — {~ Run manusally
Run a simulation to ’7 ﬁ_‘ ’7 0 —‘ ’7 0 :
obtain a report. ¥ Bun automatically
= A
—Lutomatic simulaton —— |
continues until ...
" time s
run / stop / rerun controls | {1'3:
" # genersted >
. Iﬁﬂ' :
wWarning message
" ¥ completed =
—TESOUrCce Ltilization m
f-
/ ‘> |
stop criterion

Three areas on the screen are of immediate interest:

® awarning message notifies whether simulation is possible
run controls in the toolbar allow the simulation to be started
® a stop criterion to limit the simulation run

To get rid of the warning message, click on it.
To set a stop criterion, click the respective radio button and fill in a value:

® use time > to stop as soon as the given time is exceeded
® use # generated > to stop when the given number of cases has been generated
e use # completed > to stop when the given number of cases has been completed®

* Completed in the sense of section 1.6.4.5, i.e. its last case token was collected by a collector.

Last updated: May 13, 2005 p. 87 /94

Yasper Yet Another Smart Process EditoR User GUide

4.3 Not being able to run a simulation

If simulation is impossible, all run controls are disabled.
This will happen when

® no path of flow arcs leads from an emitor to a collector (so cases cannot complete)
e there is a timeless transition or XOR without inputs (so time cannot proceed)

To remedy this, click on Edit and change the model to remove these conditions.

For instance, basic Petri nets without case can often be prepared for simulation by adding an
emitor, case-sensitive place and collector, and connecting them to the existing net.

Last updated: May 13, 2005 p. 88 /94

Yasper Yet Another Smart Process EditoR User Guide

4.4 Starting, halting and restarting a simulation

Eﬁva sper - (unnamed)

File Edit View Foles Options Help

Did ool
report on the |atest
. Start the simulation

m;ﬂl_!hmaim—q-l"
Run & simulation to 0
obtain 3 report.

Eﬁva sper - (unnamed)

File Edit View Foles Options Help

OlE «e|s|n ¢
report on the |atest automg- min — _ _
folice Start the SJﬂ'ILiE_ItIDI‘I with a ﬁxid sequence|
Run a simulation to 1] 1]
obtain 3 report.

To start a run, click Start the simulation or Start the simulation with a fixed sequence.
In the latter case, runs always take the same course when repeated.

These buttons are disabled when simulation cannot start.
This is the case when

a run is already in progress

a halting criterion has been specified, and it is met

no (first or next) step is possible (the simulation is in deadlock)
simulation is impossible (as specified in the previous section)

Eﬁ‘ra sper - (unnamed)

File Edit View FRoles Opfions Help

DI@IEI Hl. :.l\m_)' " model & report
report on the latest automated r.] - -
Stop/Pause the simulation
[=how case list R 37 WLWBEI Fremniced
20916 20917 20917

During a run, the current time, number of generated cases, and number of completed cases are
displayed in the respective fields.”*

To halt a run, click Stop/Pause the simulation. A report is generated.

* Whether or not these numbers always increase during a run depends on the model being simulated.

Last updated: May 13, 2005 p. 89 /94

Yasper Yet Another Smart Process EditoR User GUide

5 vasper - (unnamed)

File Edit WView Foles Options Help File Edit WView FRoles Options Help

Cl|@| i m|e|n 0=

report on the latest am'E i - - report on the late) don
|_ Resume the simulation I r .
_ = = —time &l

To continue a halted run, click Resume the simulation.
To revert to the initial situation, click Back to start.

Last updated: May 13, 2005

p. 90/ 94

Yasper Yet Another Smart Process EditoR User Guide

4.5 The simulation report

When a simulation run halts, a report is generated.

. Process Simulator 1 =] B
[~ report on the |atest automated run i~ Automatic simulation —
. ime elapsed # generated # completed continues until ..,
v ! : :
1< etmwr s ot 1012.39 —‘ ’7 745 —‘ ’7 43 —‘ B
—report per emitor-collector pair [= |
from [to | collected | completed | waitfime | cycletime | work time| cost | " # generated =
(1) Car Demage Reported (1) Car Damage Handled (136 196 12483 13441 946 282.89 W
(2) Car Damage Reported (2) Car Damage Handled 247 247 11348 117.86 441 64.88 =
" # completed =
i resource utihzation Iﬁ
rolename: | % busy | -
Clerk 8246
Expert 9493
Expert2 9427
Expert3 2538 d
—Case st
case | from [ta | completed? | waittime |eycletime |worktime | cost il
Start
747 (1) Car Dama no 1013.3% 0 1] 0
746 (2) Car Dama no 1013.39 0 0 0 Ston
745 (1) Car Dama {1) Car Dama no 0.16 0 0 0 —_Fl
744 (1) Car Dama |(1) Car Dama no 205 0 o 0 > =
i - e |
Exit |

A report can have three parts:

® report per emitor-collector pair
(always included, but empty when no case was completed)

® resource utilization
(only displayed when the model specifies roles)

e case list
(only displayed when show case list is checked)

The report per emitor-collector pair displays statistics on completed25 cases, aggregated by their
emitor and completing collector. The columns display the following:

e from = the emitor’s name and/or id*®
e to =the completing collector’s name and/or id
® collected = the total number of case tokens of cases with this emitor that ever arrived at

this collector, including tokens for cases that haven’t completed, or have completed in a
different collector

e completed = the number of cases with this emitor completed by this collector

» Completed in the sense of section 1.6.4.5, i.e. their last case token was collected by a collector.

*% Whether name and/or id are shown depends on the Show names and Show identifiers options in the View menu,
cf. section 2.15.

Last updated: May 13, 2005 p. 91 /94

Yasper Yet Another Smart Process EditoR User Guide

All further quantities are averages on the completed cases only:

e work time = the average amount of processing time spent on a complete case by tasks; if
parallel processing was done on the case, the processing times of all case tokens are
added together

® wait time = the average amount of time a case was kept waiting, i.e. during which it had
one or more tokens and no transition was processing any of them

® cycle time = the average amount of time a case was in the system, measured from leaving
its emitor to being completed at its collector

® cost = the average processing cost of a case

The resource utilization report displays, for each role, what percentage of time its instances were
involved in processing a task. All cases are considered, not only the ones that have completed.

The case list displays information on each individual case, whether completed or not. The mean-
ing of the columns is the same as for the first table, except that it isn’t aggregated.

Last updated: May 13, 2005 p. 92 /94

Yasper Yet Another Smart Process EditoR User GUide
4.6 Switching views and modes
To the right of the toolbar, two buttons appear in automatic run mode.
These can be used to switch views between the reports and the diagram.
Etfi‘ra sper - C:\Documents and Settings\rpost\My Documents\svn\yasper.net\brunk\Yasperitis -0] x|
File Edit View FRoles Optfions Help
= - [icrde
MEEEEE] -
Edit
cnifst £ Runmanually
parked

i

park car

UNsCcrew cap

start washing tey -

F Fiien dUicmEn oAy

—Automatic simulation ———
continues until ...

 time>

_ windows- - =7 " # generated >
windows windows O # completed
must be being ¥ z
washed washed | {}3:
washing windows dor EiEr
E . Hierarchy

----- {unnamed}

2l |

To see the token flow while a simulation is running, click on model.
To switch back to viewing the reports, click on report.
This can be done before, during, or after a run.

Switching views in automatic run mode is not the same thing as switching to Edit or Run manu-
ally and back. The former does not affect the simulation state, and can even be performed while
arun is in progress. The latter halts the simulation, and either rewinds to the initial marking, or,
when Keep final marking after runs is set in the Options menu, modifies the state to be a valid
marking, by forcibly terminating any processing being done in transitions, since tokens cannot
reside inside transitions in either mode.

Some File operations can be invoked in automatic simulation mode, but have the effect of
switching to edit mode, since they do not make sense unless performed in edit mode.

Last updated: May 13, 2005 p. 93 /94

Yasper

Yet Another Smart Process EditoR

5 Index

(This index is still very incomplete.)

A

alternative execution 10
arc8
arc types, special 20
arc weights

output weights 23
arc, inhibitor

inhibitor arc 21
arc, reset
reset arc 22

arcs, combined
combined arcs
arc multiplicity 20

basic net 7
biflow arc 20
BPMN 14
branching 10, 13

C

choice element
XOR element 14
correctness 12

E

execution
execution rule

F

flowcharts

H

hierarchy
subnets

input arc

marking
multiple tokens

N

net7

nondeterministic

execution

Last updated: May 13, 2005

14

18

20

e}

(0

output arc 20

P

parallel execution 10

Petri nets 7
place 7
process execution 17

process execution rule 14
process execution with
subnets 19
process model 2
proper completion 11

R

resource 16
resource contention 11
role 16
role capacity

capacity 16
role is not a place 17

S

shortcut arcs 13

User Guide

simulation 2
state machine 13
token 8
transition 7
UML activity diagrams
13, 14

UML statecharts 13

W

well-handled nets 11

workflow 11
X

XLANG 13

Yasper 2

Yasper website 2

p. 94 / 94

